
The

Web-Enabled Extraprise

David McGoveran
Alternative Technologies

13150 Highway 9, Suite 123
Boulder Creek, California, 95006

Website: www.AlternativeTech.com
Email: mcgoveran@AlternativeTech.com

Telephone: 831/338-4621 Facsimile: 831/338-3113

Report Number 980805

13150 Highway 9, Suite 123, Boulder Creek, CA 95006 • Phone 831/338-4621 • FAX 831/338-3113 • www.AlternativeTech.com • Page 1

Copyright 1998, Alternative Technologies All Rights Reserved

Disclaimer and Notice

This report is produced and published by Alternative Technologies, Boulder Creek, CA. The
information and opinions presented in this report are exclusively those of Alternative
Technologies, except where explicitly quoted and referenced. Although reasonable attempts
have been made to insure the accuracy of the report, no guarantees or warrantees of correctness
are made, either express or implied. Readers are encouraged to verify the opinions stated herein
through their own efforts.

Bluestone Software is granted a non-exclusive license for unlimited distribution of this report in
its unabridged form. No abridgement of this report may be reproduced in any form or media
without the explicit written permission of Alternative Technologies.

For information about this or other reports, or other products and services (including consulting
and educational seminars), contact Alternative Technologies directly by telephone, mail, or via
our Web site:

Alternative Technologies
13150 Highway 9, Suite 123
Boulder Creek, CA 95006

Telephone: 831/338-4621 • FAX: 831/338-3113
Email: mcgoveran@AlternativeTech.com

Website: www.AlternativeTech.com

13150 Highway 9, Suite 123, Boulder Creek, CA 95006 • Phone 831/338-4621 • FAX 831/338-3113 • www.AlternativeTech.com • Page 1

Copyright 1998, Alternative Technologies All Rights Reserved

TABLE OF CONTENTS

I. Introduction .. 1

II. Evaluating Application Server Technologies .. 2
 Scalability.. 4
 Availability .. 6
 Manageability .. 6
 Interoperability .. 7
 Deployment Flexibility... 8

III. The Sapphire/Web Application Server Framework.. 9
Scalability ... 9
Availability ... 10
Manageability ... 11
Interoperability ... 11
Deployment Flexibility .. 12

IV. Conclusions.. 14

About Alternative Technologies and David McGoveran.. 15

13150 Highway 9, Suite 123, Boulder Creek, CA 95006 • Phone 831/338-4621 • FAX 831/338-3113 • www.AlternativeTech.com • Page 1

Copyright 1998, Alternative Technologies All Rights Reserved

I. Introduction

On the way to the virtual enterprise1, existing enterprises must transition from a control-centric
approach to an opportunity-driven approach. The world is changing more and more rapidly,
forcing businesses to focus on taking advantage of ever new, perhaps transient, opportunities in
order to compete. In an opportunity-driven enterprise, importance is placed on agility rather
than on control. This transition is being fueled by Web-enablement of business functions. Web-
enablement of departmental, cross-departmental, and enterprise business functions increasingly
impact the business. With application server technology, a business has an opportunity to absorb
that impact while leveraging existing technologies.

But the Web-enabled enterprise is not the end of this progression. The extranet is being used to
extend business processes beyond those implemented via the corporate infrastructure. When this
is done, the term "enterprise" can no longer describe business activities. In this paper, the term
extraprise is introduced to capture the sense of this developing business style.

As every CIO knows, it is becoming more and more difficult to plan in this world of rapid
business change. Such change makes delivering sustainable technology for the extraprise very
difficult. In addition, there is a great need to find some way in which to interconnect a wide
range of technologies while maintaining control (see Figure 1). Application server technologies
have seen renewed interest because of the need to deliver Web-based solutions. However, not all
application server technologies can respond to the explosive growth in capacities nor in the high
availability requirements that characterize the successful extraprise.

- FIGURE 1 -

This report will help technology managers understand important features of enterprise
application server technologies. The focus is on evaluating application server technologies for
their ability to support a business as it transitions to an extraprise. In Part II, we discuss the key
issues from a product-independent point-of-view. In Part III, we will discuss the relevant

1 In its most extreme form, the virtual enterprise may have no physical location, no staff of its own, and may
reorganize continuously.

13150 Highway 9, Suite 123, Boulder Creek, CA 95006 • Phone 831/338-4621 • FAX 831/338-3113 • www.AlternativeTech.com • Page 2

Copyright 1998, Alternative Technologies All Rights Reserved

features and functions of Bluestone's Sapphire/Web Application Server Framework, which we
recently audited.

II. Evaluating Application Server Technologies

Most technology managers are very familiar with the process of selecting a software technology
for traditional environments. I.T. departments now have almost two decades of experience with
the process of high capacity requirements planning, and with measuring performance and load.
Principles developed for the mainframe have been extended to the client/server environment. We
understand that a desktop class solution may not address a departmental problem and that a
departmental class solution will probably not address an enterprise problem. Even business
managers with little technical training understand this classification of the power of software
products.

Unfortunately, we have yet to develop an equivalent classification scheme for software in the
Web-enabled environment. This can make it difficult for IT to select the appropriate product to
meet requirements. There is no concept of a "desktop" application server. Even if deployed as a
"departmental" solution, the load on an application server will grow rapidly when it becomes
accessible to other departments, the sales force, customers, or the general public. Not all
application server products can handle this increased load in an equally graceful manner.

Part of the problem is that traditional measures of load will not suffice for an application server
in the extraprise. Numbers of users, transaction rates, database sizes, and so on make sense
when applied to traditional applications. But these do not help much in the extraprise. The
number of users cannot be used as a successful measure. Depending on the work the user needs
to accomplish and their sophistication, the load per user can vary greatly. Even measures such as
the number of HTML pages served are not enlightening. Depending on the design, the number
of HTML pages served to complete a single business function can vary from one complex (and
perhaps poorly designed) page to tens of pages (especially when the user is browsing).

Transactions2 are the primary unit of load traditionally used to measure performance and
scalability in software systems3. There are three main types of transaction:

• business transaction the unit of audit, a business transaction includes the work from
one audit point to another audit point

• logical transaction the unit of consistency, a logical transaction includes the work
that will transition the system from one consistent state to another consistent state4

2 The term transaction is used here in the formal sense. As such, the load may be read-write (involving data
entry or collection) or may be read-only (such as a query load).
3 Abstract workloads are used in measuring performance on hardware systems, but these are inappropriate units
for comparison when measuring application software systems.
4 A system such as a database is in a consistent state if all known consistency or integrity rules are satisfied.

13150 Highway 9, Suite 123, Boulder Creek, CA 95006 • Phone 831/338-4621 • FAX 831/338-3113 • www.AlternativeTech.com • Page 3

Copyright 1998, Alternative Technologies All Rights Reserved

• physical transaction the unit of recovery, a physical transaction includes the work
that can be restored (recovered) in the event of a system failure

Business transactions are the only type of transaction to which a business manager can relate
business performance measures. In general, implementation of a business transaction may
require multiple logical transactions and implementation of each logical transaction require
multiple physical transactions. From the business perspective, business transactions are the ideal
measure of load on a system. Business transactions are the more meaningful type of transaction.
By contrast, the variability in number of logical and physical transactions required to accomplish
a particular business objective makes these transaction types a relatively poor measure of load.

Although it is a crucial measure of load in a traditional software environment, even business
transaction rates may not be the ideal measure of load in a Web-based environment. Here, every
request is asynchronous. Also, a single user interaction may trigger multiple business
transactions across multiple applications. On the other hand, multiple user interactions may be
required for the application server to accumulate all the information necessary for a single
business transaction to complete.

A better measure of load in a Web-based environment is the number of interactions, defined as
roundtrips between the user and the application server for a controlled exchange of information.
In a sense, this approach inverts the traditional view of transactional processing. Emphasis is
placed on completing or acknowledging the user request in the same way that we usually
emphasize logging the completion of a database transaction5. Just as transaction management is
essential in traditional enterprise applications, so is interaction management in extraprise
applications.6

In defining an interaction standard load for performance benchmarking or product comparisons,
the relationship to business transactions should be carefully documented.7 In a typical business
application, this relationship cannot be held fixed and will vary. Because the number of
interactions depends on so many unpredictable factors, it is essential that the application server
be robust in a number of ways. These include scalability, availability, manageability,
interoperability, and deployment flexibility. In the next sections, each of these features will be
addressed.

5 In this case, we treat the user just as we would any resource manager. Until the user has received completion of
the interaction (like the transaction), the interaction is not complete (committed).
6 Like distributed transactions which involve multiple distributed resource managers (or transaction logs),
distributed interactions involving multiple users are also possible. These concepts open the way for a more
reliable approach to distributed collaborative computing, which will be essential for some types of extraprise
applications. For example, this would be a reasonable way in which to implement a distributed, Web version of
real estate escrow process which typically involves interactions among the buyer, seller, agent, escrow officer,
and lender.
7 A preferred approach implements one or more business transactions for every interaction, avoiding the
complexities of supporting business transactions that span multiple interactions.

13150 Highway 9, Suite 123, Boulder Creek, CA 95006 • Phone 831/338-4621 • FAX 831/338-3113 • www.AlternativeTech.com • Page 4

Copyright 1998, Alternative Technologies All Rights Reserved

Scalability

Given the need to increase capacity rapidly, it is important that a Web-enabled application server
technology does not limit the ability to respond to that need. This requirement implies that the
application server architecture be distributed, permit multiple load-balanced copies of any
application server, and have no bottlenecks.

In order for the architecture to be distributed, it must be designed and developed as a set of
interconnected processes. The function of these processes and how they are interconnected is
peculiar to the particular product. If an individual process has multiple combined high level
functions, it will almost certainly have multiple load characteristics as well. If these functions
share resources, their impact on load will not be strictly additive and the process is very unlikely
to scale in a linear fashion. A good design will assign one function per process. It will permit
(though not require) each process to be associated with its own physical resources or platform.
This association is called affinity.

A special form of affinity is called session affinity. There are two important cases when session
affinity is advantageous. First, an application server might be designed to maintain state (as
might be appropriate for security or performance reasons, or because the application is designed
to be procedural). Second, it may require session-specific allocation of resources. In both cases,
state must be re-synchronized across application server instances and resources need to be
reallocated if instances change for the session. Session affinity guarantees that the client is
returned to the same application server process or instance. It eliminates the overhead that
would occurs if instances change, and improves scalability.

Few designs provide application server instances that can support an open-ended load. If too
much load is assigned to a particular instance, that server instance will become a bottleneck. As
a result, it is sometimes desirable to increase the number of instances assigned to a given
function while allocating additional physical resources to those instances. However, even if
instances for a particular function are assigned to multiple platforms, assigning too much load to
the instances on a single platform will cause that platform to become a bottleneck. The solution
to this dilemma is automatic and dynamic real-time load balancing across all resources.

In an application, the context necessary to support completion of a request and its associated
response, or between a sequence of requests, is called the state. It must be maintained and
correctly transitioned if there is to be any consistency in the application. The process by which
state is coordinated among the components of an application is called state synchronization.
The greater the need for state synchronization among an application's components, the more
monolithic the behavior of the application becomes. Often some components must wait for
another component in order to synchronize state. The latter component then dictates the
throughput of the system, becoming a bottleneck if it is not capable of handling the load.

The time cost incurred when an application component must wait in order to synchronize state
depends on two factors: (1) the performance of the component with which it is synchronizing
state and (2) the communications mechanism being used. If state synchronization occurs in

13150 Highway 9, Suite 123, Boulder Creek, CA 95006 • Phone 831/338-4621 • FAX 831/338-3113 • www.AlternativeTech.com • Page 5

Copyright 1998, Alternative Technologies All Rights Reserved

shared memory, the cost is relatively low. By contrast, if it occurs across platforms, the cost is
relatively high. Ideally, of course, state would never have to be maintained or synchronized.
Such applications are said to be stateless. In principle, all applications could be stateless. In
practice few applications are designed to be.

Given the time cost and need to avoid monolithic behavior, state management issues are
especially important in a distributed application. For example, in a traditional client/server
environment, both the client and the server maintain a portion of any necessary state. This is
possible because the connection is usually synchronous, meaning that the client portion does not
proceed until it has received a response to its most recent request. Of course, if the client
process fails, state is lost and at least the most recent request must be resubmitted during
recovery. On the other hand, if excessive state synchronization with the server is required, the
time cost across the network is significant and the server can become a bottleneck. Failure to
minimize the need for state synchronization and manage it properly are among the most common
reasons for loss of scalability among failed client/server applications.

In a Web-enabled environment, the connection is asynchronous, permitting the client to proceed
with other requests prior to receiving a response. This means that the entire state or context of
the communication must be maintained in some location, unless the application is designed to be
stateless. There are five basic approaches to maintaining state in a Web-based environment.
These include maintenance in the browser client, in the Web server, in the application server, in
middleware, or in a persistent state server.

One method is to maintain state in the Web client as a "cookie" or in HTML. While this method
is scalable, it places reliance on the most uncontrolled portion of the architecture. Loss of the
client (due to, for example, unexpected loss of connection or platform failure) can have a serious
impact on application and database consistency. Because an interaction may generate multiple
transactions across application servers, coordinating the application recovery in the face of Web
client failure becomes extremely complex and error prone. In particular, it is possible that only
some of the transactions are completed without the client-held state having been re-
synchronized.

Maintenance in the Web server is a second method, but this method quickly becomes a
bottleneck under heavy load. As a result, the application should require maintenance only of
"light" state information for each client, thereby minimizing the incremental load. A third method
is to maintain state in the application server. This method removes the risk that state will be lost
with respect to the application server context, and consequentially that consistency will be
jeopardized. However, the application server can easily become a bottleneck because the load
due to state maintenance (and recovery) can be quite high compared to execution of application
functionality.8 Likewise, state can be maintained in middleware, but this fourth method also
easily becomes a bottleneck and is difficult to recover when it becomes overloaded. The fifth

8 Even though the time cost of state synchronization is low if done in shared memory (as it might well be when
state is maintained in the application server), the approach still becomes unviable. It places availability and
durability in excessive jeopardy and sessions block waiting for access to shared memory during state
synchronization.

13150 Highway 9, Suite 123, Boulder Creek, CA 95006 • Phone 831/338-4621 • FAX 831/338-3113 • www.AlternativeTech.com • Page 6

Copyright 1998, Alternative Technologies All Rights Reserved

method is the use of a persistent state server. By assigning state maintenance functionality to its
own server process, scalability is assured and the potential for bottleneck is greatly reduced over
other methods.

Another important aspect of scalability is the load that a particular application server instance
can support. This is affected by whether or not the application server is multi-threaded. Until
recently, most application servers were not multi-threaded. The difficulties of developing thread-
safe, multi-threaded software have been greatly reduced by the recent introduction of Java.
Because Java is an inherently multi-threaded, application servers that are 100% Java are more
likely to provide the throughput benefits of multi-threading.

Availability

Availability is a familiar requirement of enterprise applications. Expected loads are fairly
predictable and permit considerable capacity planning. In such environments, TP monitors,
highly available DBMSs, hardware redundancy, and highly available operating systems with
known failure rates and planned maintenance cycles are used to meet specific availability
requirements. Like enterprise applications, a Web-enabled application environment for the
extraprise cannot afford significant downtime. Extraprise application servers should provide
support for TP monitors and highly available DBMSs. There should be no restrictions on
platform support that would preclude the use of hardware redundancy or fault tolerant operating
systems.

While traditional methods to improve availability are still required, the unpredictability of loads
in an extraprise application brings new concerns. In particular, the interaction must be completed
even if the client, application server, or platform fails. When a highly available state server is a
part of the architecture, service migration techniques can be an effective response to a failure.
This technique requires either a multi-instance application server or the ability to start an
application server instance on a different platform. When a failure occurs, the request processing
is restarted automatically on a different application server. Service migration is a familiar feature
of TP monitors. However, because of the asynchronous nature of the Web-environment, service
migration is difficult to implement between Web-client and application servers using a TP
monitor. The corresponding functionality should be provided by a Web-enabled application
server environment.

Application isolation is a deployment style which, among other things, can improve availability.
In this style, applications can be deployed as self-contained application servers. This enables
service migration at the application level, as well as enhancing the impact of load balancing
techniques on availability. It also permits the application resource usage, performance, and
availability to be monitored, and resources to be allocated to the application as needed.

Manageability

The extraprise application environment can become extremely complex. It can involve many
application servers, browsers, databases, distributed components, and distributed applications

13150 Highway 9, Suite 123, Boulder Creek, CA 95006 • Phone 831/338-4621 • FAX 831/338-3113 • www.AlternativeTech.com • Page 7

Copyright 1998, Alternative Technologies All Rights Reserved

(including component-based, desktop, and legacy). Integration with a management tool is
required if such system complexity is to be monitored and controlled. Ideally, the application
server environment will have a native management tool. Ease of use of such a tool is essential in
the complex environments that are needed to support the extraprise. A graphical console for
both monitoring and control functions will make it possible to visualize the environment quickly
and easily.

Because the extraprise application is inherently distributed, integration with management tools
should be agent-based. An agent-based approach permits real-time monitoring (including event
notification and alarms) and the ability to detect availability status even if the application service
is shut down or has been moved to a different platform. It can also provide run-time
management including a means to start, stop, and check the health of any platform or
component of the application. Real-time monitoring should also support the collection of
statistics on usage, loads, response times, and so on. Once collected, it should be possible to
analyze them and produce trend reports periodically. Utilization and service levels are
particularly important for the extraprise.

With agent-based management, integration with existing, third-party system management
utilities is possible. At the most basic level, this integration should provide simple status
monitoring. More advanced monitoring should provide statistics collection about the
environment. Tighter integration with third-party system management utilities should permit
configuration information to be passed to the application server management facility, thereby
providing a single point of management and control across the enterprise.

Interoperability

An extraprise application server must be able to integrate with a wide variety of packaged
application software, component based applications, legacy applications, and middleware.
Integration is usually based on a relatively small amount of special software. This software goes
by a variety of names including adapter, bridge, connector, driver, and integration module. For
purposes of this report, we will use the term integration module.9

There are many types of integration modules, which differ in the degree of software integration
supported. Data integration modules provide data transfer to and from an application, but do not
address either process or transactional concerns. A common variant of this integration module
type provides data integration through file-based import and export capability. File-based (or file
format) integration modules can be used to rapidly replace manual or semi-manual pre-existing
application integration solutions that are file-based or which use EDI. Data integration modules
are relatively easy to develop and deploy, but are not well-suited to online electronic commerce
applications. They are best suited to environments that can tolerant either batch update or in
which update transactions involve no response.

9 As we will see, this is the term used by Bluestone. While uncommon in the industry, it emphasizes the need for
integration in extraprise applications.

13150 Highway 9, Suite 123, Boulder Creek, CA 95006 • Phone 831/338-4621 • FAX 831/338-3113 • www.AlternativeTech.com • Page 8

Copyright 1998, Alternative Technologies All Rights Reserved

API-based integration modules use an application-specific API. In most cases, the API provides
a means to submit business transactions to the application. In some cases, a lower level API is
provided and the user must determine how to identify transaction boundaries. In other cases,
the API is used to develop messages that provide input to an application's screens, panels, or
pages. API-based integration modules are best suited to packaged applications.

Middleware integration modules provide access to middleware facilities. Middleware10 such as
CICS, Tuxedo, MQSeries, MSMQ, COM services, CORBA services, ODBC (for connectivity
to DBMSs), email (SMTP), security services, Web servers, browsers, and other facilities are
used to provide message and transaction support. These are often the required vehicle for
integration with legacy applications, component-based applications, and existing application
silos. When middleware integration modules are used for component-based applications, support
for either COM or CORBA services is essential.

Component integration modules are relatively new in the market. These integration modules
provide easy integration with Java applets and Servlets, Java Beans, Enterprise Java Beans,
CORBA objects, ActiveX components, and others. An important feature of component
integration modules is dynamic introspection, which permits access to the interfaces of broker-
registered components. Component integration modules are best suited to component based
environments or, in conjunction with middleware integration modules, integration of
components and legacy applications.

Custom integration modules can be of any type. Development of an integration module usually
requires a developer kit and may be supported by an integrated developer's environment as well.
Like component integration modules, custom integration modules may support dynamic
introspection. The languages supported are also important: Java and C++ are most common, but
a wide variety of other languages are desirable.

Deployment Flexibility

It is difficult to predict how an extraprise application will need to be deployed. Architectural or
other limitations on the method of deployment are therefore undesireable. Thin client Web-based
applications are likely to be a significant part of the deployed architecture. However, this does
not preclude the need to support fat clients, which may be appropriate (for example, when the
client must perform heavy analytical work on data extracts). Similarly, peer-to-peer and multi-
tier client/server deployment architectures may be required for portions of the extraprise
application.

The application server should be platform and database independent. This means that standards
must be supported. It also suggests that Java deployment capability would be advantageous. In
the event that Java is not available or is considered to immature, C/C++ deployment is still a

10 As used here, middleware refers to products and services that support application-independent services such as
messaging and transactions. Application servers are also middleware, but generally provide a specific business
related service.

13150 Highway 9, Suite 123, Boulder Creek, CA 95006 • Phone 831/338-4621 • FAX 831/338-3113 • www.AlternativeTech.com • Page 9

Copyright 1998, Alternative Technologies All Rights Reserved

good portability alternative. Changing the deployment language should not require
redevelopment.

Most deployment choices are made in or enabled by the development environment. An
integrated development environment should be available. It should support the development of
applications with any user interface technology and developed in any language, as these choices
greatly affect the deployment. Just like enterprise class applications, the development
environment should support features such as source code control, project management, team
development, and the ability to merge multiple projects. These features affect the ability to
control and manage deployment choices, in addition to the obvious development value.

Even though deployment options may have been determined in the development environment,
the actual physical deployment should be dynamic. This feature permits an application server to
be moved from one platform to another even while the application is running. This might be
done, for example, because the initial platform requires maintenance or because the new
deployment provides a better allocation of resources.

III. The Sapphire/Web Application Server Framework

Bluestone Software's Sapphire/Web Application Server Framework is an example of today's
application server technology. The product has a number of components which are used to
address the issues of scalability, availability, manageability, and deployment flexibility. The
components are:

• Sapphire/Universal Business Server
• Sapphire/Application Manager
• Sapphire/Enterprise Deployment Kit
• Sapphire/Integration Modules
• Sapphire/Developer

Scalability

The Sapphire/Universal Business Server is Bluestone's highly scalable application server
deployment architecture. It is a multi-process environment and a Sapphire/Web application
server is multi-threaded. It's environment includes a persistent State Server and a Load Balance
Broker.

The Load Balance Broker component provides automatic and dynamic real-time load balancing.
This component runs in the Web server as an extension (ISAPI, NSAPI, or CGI), as a servlet, or
inside the firewall as a proxy. It can also run across servers, thereby supporting very large sites
that distribute load across multiple Web servers. The load is evaluated based on the number of
active requests being processed by an application server (and application server availability).
This facility routes incoming requests, starts additional application servers as needed, and helps
utilize CPU resources efficiently. Not only is it possible to distribute the load across multiple

13150 Highway 9, Suite 123, Boulder Creek, CA 95006 • Phone 831/338-4621 • FAX 831/338-3113 • www.AlternativeTech.com • Page 10

Copyright 1998, Alternative Technologies All Rights Reserved

platforms, the load can also be distributed across multiple instances. These instances may either
be replicas of a single application, single function, or may be a set of related functionality
implemented as distributed processes. As loads vary, the resources allocated to an application
server instance are varied as well. Within any particular instance, the number of threads assigned
to a task may be varied.

A high-volume persistent State Server is provided for state management, although client, Web
server, application, and zero state management options are also supported. State can be cached
to improve performance. Global, application, session, user, object, and string states can be
optionally managed. When state is maintained in the application server or the persistent State
Server, the Load Balance Broker can provide session affinity. Session affinity means that a
client session will be consistently directed to the same application server instance. This allows
the application server instance to use non-persistent cached objects across interactions. Session
affinity can be extremely important for high performance, secure applications such as electronic
commerce transactions. The feature would also be important, for example, if establishing a
database connection for each request would impair performance.11 In this case, the database
connection could be cached in application server memory by Sapphire/Web's Live Object Cache.
Objects stored in the Live Object Cache can be set to refresh automatically if referenced after a
selected "time out." To enhance throughput of an application server, persistent data can be
stored in memory on a per-session basis.

Availability

Sapphire/Web applications can be deployed in highly available and fault tolerant environments
without restriction. In addition to this deployment flexibility, the Sapphire/Universal Business
Server and the agent-based Sapphire/Application Manager (see below) use a number of
techniques to improve availability.

In a distributed application, failures can occur at many levels. These include threads, processes,
server platforms, network connections, and clients. If the Load Balance Broker or a
Sapphire/Application Manager agent detects a failure, a new instance can be started
automatically in response to an alarm set through the Sapphire/Application Manager console.
This provides failover, for example, across application server instances: any further browser
interactions will be routed automatically to a live instance. Sapphire/Web supports the
application isolation deployment style, which can be used to enhance recovery.

An application server instance is automatically stopped if it receives no requests within a settable
time-out, thereby preventing it from consuming resources unnecessarily. Servers can be added
or removed while the system is online. Simultaneously, an alternate resource is assigned to the
outstanding task automatically by the Load Balance Broker component. Because applications
can be run on any platform in the network, the ability to route requests to any available resource
is possible. The Load Balance Broker supports service migration.

11 Note that this is a somewhat artificial example, selected for purposes of familiarity. Which objects are stored in
the Live Object Cache is at the discretion of the developer. Sapphire/Web actually provides other efficient
mechanisms for connection caching.

13150 Highway 9, Suite 123, Boulder Creek, CA 95006 • Phone 831/338-4621 • FAX 831/338-3113 • www.AlternativeTech.com • Page 11

Copyright 1998, Alternative Technologies All Rights Reserved

Manageability

The Sapphire/Application Manager is an agent-based sub-system for monitoring and controlling
the entire Sapphire Application Server environment, from the Web client to the application
server. It consists of agents, a fault-tolerant rules-based server engine, application mangers, and
one or more GUI consoles. Agents communicate between application servers, state servers, data
servers, and other Sapphire/Application Manager components. The GUI console can control
multiple application managers and an application manager can accept commands from multiple
consoles. The console is used to configure load balancing rules, change application server
platforms, and control the number of running application server instances. All of this can be
done online and in real-time. Application server deployment options (set prior to deployment) let
administrators set the number of allowable requests per application server instance, the
maximum number of cached database connections, and maximum application server idle time.

Agents reside on each platform, and can be assigned to a platform, Web server, database server,
or an individual application server. They collect statistics, control application servers, and
monitor applications. Statistics are logged by agents to a database, from which trend and service
level reports can be generated. This also permits chargeback accounting. Events can be defined
and named, although they cannot be grouped. Transactions can have a maximum elapsed time
assigned, whereupon an event is logged. Alarms and alerts are supported. For example, an alarm
is generated if performance of an agent-monitored component drops below specified parameters.
In addition, responses (such as starting a new instance, sending email, or a pager alert) to an
alarm can be automated.

Tight integration is provided with CA Unicenter and is available for IBM's Tivoli. In fact, any
SNMP compatible system management software (such as HP OpenView and BMC Patrol) can
be integrated with the Sapphire/Application Manager.

Interoperability

Sapphire/Enterprise Deployment Kit

The Sapphire/Enterprise Deployment Kit can be used to develop both custom and component
integration modules. The Bluestone name for an integration module is a SIM
(Sapphire/Integration Module). These integration modules can interoperate with COM,
CORBA, MTS, JavaBeans, and Enterprise JavaBeans. Object classes are auto-detected and
dynamic introspection of Visibroker, Orbix, RMI, and COM/DCOM objects is supported via the
Java Object Binder component. Dynamic introspection allows all object methods and properties
to be displayed so that they can be the input and output parameters/methods for the custom
integration module wrapper. The custom integration module wrapper implements a developer-
defined set of functionality, which can be the entire component function or some subset of
behavior.

13150 Highway 9, Suite 123, Boulder Creek, CA 95006 • Phone 831/338-4621 • FAX 831/338-3113 • www.AlternativeTech.com • Page 12

Copyright 1998, Alternative Technologies All Rights Reserved

Sapphire/Integration Modules

In addition to custom integration modules, Bluestone offers a number of pre-built integration
modules. These include:

• API-based integration modules for SAP and PeopleSoft.

• Middleware integration modules for Tuxedo, MQSeries, CICS, Open Market, LDAP,
email, ODBC/JDBC, and others.

• A special class of integration modules support modeling. Integration modules for
Logicworks ERWIN and Rational's UML are available.

Additional pre-built integration modules are being developed by Bluestone and third party
software vendors.

Deployment Flexibility

Sapphire/Developer

As noted earlier, a product's development environment often determines the possible deployment
options. Sapphire/Developer is an Integrated Development Environment which enables many
deployment options. Sapphire/Developer components include wizards, project management
tools, object management tools, a structured editor for Java or C++, database tools, tag editor,
and an extensive object library. Users can plug in their favorite Java GUI development tool, tag
editor, modeling, Java or Web testing tool, or source code control systems as well. These
facilities work together to provide broad deployment flexibility and make it easier to use the
expertise of existing development teams.

Applications developed with Sapphire/Developer can use (and integrate) multiple user interface
technologies including HTML, DHTML, HDML, XML, Java, Java Script, ActiveX, VB Script,
VRML, and others. Application isolation is supported: An application can be run on an
application server or can be wrapped as an application server itself. Developed applications are
double byte12 and can be fully localized, permitting the deployment of global applications.

Any Java Virtual Machine (regardless of platform) can be used to deploy Java-based
Sapphire/Web applications. Java clients can be deployed via IIOP or RMI, bypassing the Web
server. If IIOP is not available, automatic failover to HTTP helps insure access. Because 100%
Pure Java is used in Sapphire/Web Java implementations, RMI methods can be called directly
from either the server or the client. In addition, C/C++ based Sapphire/Web applications can be
deployed on Windows 95, Windows NT, DEC Alpha NT, SunOS, Solaris, IBM AIX, HP-UX,
SGI IRIX, and DEC Alpha UNIX. IT departments will find few restrictions with respect to the
deployment environment.

12 Sapphire/Developer itself was not double-byte at the time of this audit.

13150 Highway 9, Suite 123, Boulder Creek, CA 95006 • Phone 831/338-4621 • FAX 831/338-3113 • www.AlternativeTech.com • Page 13

Copyright 1998, Alternative Technologies All Rights Reserved

The Sapphire/Web deployment style is important in managing risk during application
development and deployment, or during operation due to failures. Its application isolation
capabilities permit each application or application component to be separately maintained,
tested, deployed, and scaled, while being managed and configured as a single entity. This
prevents individual components from becoming a bottleneck, or from crashing the entire Web
site or application on a failure. Application components can be deployed as Java applications,
Servlets, JavaBeans, Enterprise Java Beans (EJB), CORBA service, NSAPI, ISAPI, WAI,
Oracle's WRB-API, Active Server Pages, or Fast CGI. Any JavaBean can be wrapped as an
ActiveX component. These facilities enable existing IT investments to be preserved by providing
component-level and cross-platform interoperation.

Middleware deployment options include IIOP, RMI, or DCOM, as well as various ORBs.
Licenses for Visigenic's Visibroker and RMI are bundled. Iona's ORBIX and Sun's JavaIDL are
supported.

Multiple projects can be managed and isolated, projects can be merged, projects can be reused,
and portions of projects can be reused. Single level inheritance is supported. Name conflicts are
automatically resolved.

Multiple DBMSs are supported using native access including Oracle, Sybase, MS SQL Server,
MS Access, Informix, and DB2. Any ODBC or JDBC accessible DBMS can be used as well.
Microsoft's ADO can be used to access Microsoft SQL Server and other Microsoft DBMSs
such as Microsoft Access.

A variety of mechanisms can be used in deploying secure Sapphire/Web applications. SSL,
SHTTP, custom access control lists, certificates, and third party solutions such as Open Market
(for secure e-commerce) and Gradient (for sophisticated access control lists) are supported.
Login authorization can be based on operating system, LDAP, DBMS, or any combination.
Third-party encryption services (such as RSA, or any private or public key encryption
technique) are supported, and a lightweight encryption routine is included.

In addition to the deployment options available for applications developed with
Sapphire/Developer, Sapphire/Developer can run on a variety of hardware platforms and
operating systems. These include Windows 95, Windows NT, DEC Alpha NT, SunOS, Solaris,
IBM AIX, HP-UX, SGI IRIX, and DEC Alpha UNIX. This fact means that developers can
work in a familiar environment.

Sapphire/Application Manager

Sapphire/Application Manager provides dynamic physical deployment. An application server
instance can be moved from one platform to another using a simple drag-and-drop metaphor. By
monitoring performance of an application server, Sapphire/Application Manager can be used to
automatically deploy another instance on a designated platform if performance drops below
preset standards. A number of configuration parameters important to efficient load balancing

13150 Highway 9, Suite 123, Boulder Creek, CA 95006 • Phone 831/338-4621 • FAX 831/338-3113 • www.AlternativeTech.com • Page 14

Copyright 1998, Alternative Technologies All Rights Reserved

(for example, cached connections, number of active users allowed on a server, and max idle
time) can be dynamically redefined.

IV. Conclusions

As businesses attempt to attain the agility demanded of an opportunity-driven approach, Web-
enabled application servers will be a key enabling technology. While there are many Web-
enabled application server products, not all of them provide the degree of support for scalability,
availability, manageability, interoperability, and deployment flexibility that will be demanded by
the extraprise. Some products have yet to provide the transactional support demanded by the
enterprise. Other products attempt to replicate a transactional focus, but do not give sufficient
attention to the interaction. Neither group of products will meet the needs of the extraprise.

Sapphire/Web is uniquely suited to the requirements imposed by the enterprise and the
extraprise. Its focus on Enterprise Interaction Management addresses the crucial measure of
load which we identified early in this report. Although there are many Web development and
application server environments, few have breadth and depth of support necessary for high-end
applications. Requirements such as scalability, availability, manageability, interoperability, and
deployment flexibility are well-addressed by the components of the Sapphire/Web Application
Server Framework. In review, the contribution of these components is as follows:

• Sapphire/Universal Business Server This component is designed to support both highly
scalable and available, fault tolerant applications. Its architectural features avoid common
bottlenecks and its facilities leave open the ability to meet increasing demands as businesses
move from the enterprise to the extraprise.

• Sapphire/Application Manager This component provides the robust single point of
control system management that is essential in a Web-based environment. Its interoperability
with third-party system management tools through standards permit integration with existing
applications environments. It also enhances availability.

• Sapphire/Enterprise Deployment Kit and Sapphire/Integration Modules Interoperability
with a wide range of existing applications, new applications, middleware, and applications
architectures through integration modules guarantees the ability to leverage technology
investments. Support for additional pre-built integration modules is desirable, especially for
packaged application software and can be expected in future releases.

• Sapphire/Developer The Sapphire/Web integrated development environment is designed
for serious, high-end application development. Wizards and drag-and-drop tools make it
relatively easy for the developer to address issues of scalabilty, availability, and
interoperability, although these issues imply a degree of complexity that is not likely to be
familiar to HTML developers. Sapphire/Developer supports the wide range of environments
and technologies (for both development and deployment) that is essential in the complex
world of the enterprise and the extraprise.

13150 Highway 9, Suite 123, Boulder Creek, CA 95006 • Phone 831/338-4621 • FAX 831/338-3113 • www.AlternativeTech.com • Page 15

Copyright 1998, Alternative Technologies All Rights Reserved

In conclusion, Sapphire/Web may well be the ideal way in which to interconnect the wide range
of technologies found in today's businesses (see Figure 2). IT organizations facing the pressures
of electronic commerce, supply chain integration, and similar rapid changes need the capabilities
supplied by Sapphire/Web. Businesses transitioning to an extraprise, and facing the inherent
business and technological difficulties, will find Sapphire/Web an invaluable product.

- FIGURE 2 -

About Alternative Technologies and David McGoveran

Alternative Technologies was founded in 1976 by David McGoveran, who also serves as the company's president.
The company provides a range of industry analyst, business and technical consulting, and educational services. It
is widely known for its pioneering contributions to distributed applications, object oriented programming, and
relational database technology. For additional information, Alternative Technologies' Website URL is
www.AlternativeTech.com.

